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Numerical Methods for Flows 
Through Porous Media. I 

By Michael E. Rose* 

Abstract. The degenerate parabolic equation 

aut = v ( Oulvvu), v >1 

has been used to model the flow of gas through a porous medium. Error estimates for 
continuous and discrete time finite element procedures to approximate the solution of this 
equation are proved, and several new regularity results are given. 

1. A Porous Medium Equation. Introduction. We shall study the porous medium 
equation 

(1.1) au/at = V (I u I"vu) on 2 X (0, T], 
(1.2) au/an = 0 on aa X [O, T], 
(1.3) u(x, 0)= uO(x) on 2, 

where v > 1 is a parameter and Q is a bounded domain in RN, N ? 3, with a smooth 
boundary. The initial function u0 is assumed to be nonnegative and four times 
continuously differentiable on U. Notice that the compatibility condition auo/an = 0 
holds on asa. 

Our main result is the derivation of error estimates for numerical approximations 
to the problem (1. 1)-(1.3), which we shall refer to as "the porous medium equation" 
or "IPME". 

The PME does not, in general, admit classical solutions. Existence and uniqueness 
of weak solutions was proved in one space dimension by Oleinik, Kalashnikov, and 
Czou [15], [16] and in several space dimensions by Lions [12]. These proofs concern 
the PME with different boundary conditions, but the arguments carry over to the 
PME (1.1)-(1.3). 

The maximum principle implies that, since u0 is nonnegative on 92, u(x, t) is 
nonnegative for all (x, t) E Q X [0, T]; see [15], [16]. If u0 is nonzero, the Neumann 
boundary condition implies that u will eventually become strictly positive and (1.1) 
will become nondegenerate for all time t > To, To sufficiently large. 

We can rewrite (1.1) in the form 

(1.4) au/at=AK(u) on QX(0,T], 
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where K(t) = fo k(T) dT and k(T) = Ij T v. We have defined k(T) for the negative 
reals because, although u is never negative, various numerical approximations to u 
may take on negative values. 

The relations (1.1)-(1.3) represent a model problem for the flow of gas through a 
porous medium; see [1]. In a sequel to this paper, we have extended our methods to 
treat a more general porous flow model 

(1.5) ayu+yf(u) (k(u) onIX(0T]I=(0 l) 

In (1.5), k(u) is a nonnegative diffusion coefficient which may vanish for one or 
more values of u. Equation (1.5) has been used to model various problems involving 
the flow of fluids through porous media, including a one-dimensional waterflood 
problem in petroleum engineering [8], [17]. The author's treatment of (1.5) has 
appeared in [18] and [19]. 

Properties of Solutions of Degenerate Parabolic Equations. The solution of Eq. (1.1) 
behaves in a strikingly different way than those of nondegenerate parabolic equa- 
tions (e.g., the heat equation, v = 0). Let us consider the PME (1.1)-(1.3) as an 
initial value problem with 2 = RT. 

In 1958, Oleinik, Kalashnikov, and Czou [15], [16] proved that if u0 has compact 
support, then u(., t) has compact support at any positive time. In fact, it is possible 
that the support of u( , t) may not expand at all for 0 < t < to, for some to > 0. The 
structure of the interface a Supp(u(x, t)) has been studied extensively by B. Knerr in 
his doctoral dissertation [10]. 

Another distinction between the porous medium equation and nondegenerate 
parabolic equations is that smooth or real analytic initial data do not necessarily 
produce a smooth solution. It is well known that nondegenerate parabolic equations 
possess a 'smoothing' property whereby L2 or even distributional initial data yield a 
smooth solution. Degenerate parabolic equations could be described as having a 
'roughing' property. 

For v > 1, it has been demonstrated that smooth, compactly supported initial data 
never yield a C' solution of (1.1) [15], [16]. The space derivative becomes discontinu- 
ous at the interface at some positive time. 

Oleinik, Kalashnikov, and Czou [16] proved that in one space dimension 

(1.6) VK(u) =|ju|vu E L?(O, T, L(?(Q)). 

In fact, VK(u) is continuous. Aronson [1] has demonstrated that 

(1.7) IuKIvu E L??(O, T, L(?(Q)). 

This result is sharp, given his assumptions on the initial data, as shown by the 
examples cited in Aronson's paper [1]. Further results on the smoothness of u(x, t) 
and the structure of the interface are contained in [2] and [3]. 

One can relate these two properties of degenerate parabolic equations. A result of 
Knerr [10] roughly states that, given smooth initial data with compact support, the 
support will not expand until u(x, t) becomes nearly vertical at the interface. When 
the gradient of u becomes discontinuous at the interface, then the support will begin 
to expand monotonically. 
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Outline. The main results of this report are the error estimates we derive for 
various Galerkin approximations to the solution of (1.1)-(1.3). We begin our 
analysis in Section 2 by studying several perturbations of (1.1)-(1.3) which yield 
smooth solutions which approximate the solution of the PME. 

In Section 3 we study the regularity theory for (1. 1)-(1.3) and a regularized 
variant of the porous medium equation given by (2.3)-(2.5) below. Theorem 3.3 is a 
new regularity result for the porous medium equation in a special (but physically 
important) case which may be of interest aside from its application to deriving error 
estimates for numerical approximations. 

In Section 4 we study error estimates for a Galerkin method to approximate the 
solution of (1. 1)-(1.3). Section 5 contains results for the backward-difference time 
discretization of the schemes in the previous chapter. 

Remarks on Notation. We will use C to denote a positive generic constant. The L2 
norm and inner product on 2 shall be given by 1 I* I1 and ( *, - ) respectively. All other 
norms and inner products will be labeled by their corresponding function spaces. 
Finally, if F maps [0, TI into a Banach space X, we define the LP(O, T, X) norm by 

(fFffLP(o,T,X) = (| IIFII '/P. 

This will sometimes be abbreviated to LP( X). For 1 - p < oo and a positive integer 
m we define the spaces 

WM'P(Q) = f IE LP(Q): .a E LP(Q2), laf < m} 

and the corresponding norms 

|If1lwm P(Q) = II8af/3aXfILP(Q). 

We use the notation Hm(g) to denote Wm,2(g2). We shall find it convenient to use 
the norm 

(1.8) IIfllH(0)= {IIVtl + f I (l fdx)} 

in place of the (equivalent) W",2( 2) norm. 

2. Regularizations of the Porous Medium Equation. One source of difficulty in 
deriving error estimates for degenerate parabolic problems is the roughness of their 
solutions. In the special case of a single space dimension or when v = 1 in several 
dimensions, it is unnecessary to regularize the PME to obtain continuous and 
discrete time convergence rates. However, when P > 1 in more than one space 
dimension, we must first perturb the problem (1.1)-(1.3) to obtain a parabolic 
boundary value problem with a smooth solution up. There are several ways to do 
this. 

The method we shall discuss is the technique of nondegenerate parabolic ap- 
proximation. The diffusion coefficient of (1.1) is 

(2.1) k(t) =j, P 1. 
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We shall replace (2.1) with a new diffusion coefficient 

k8( t) E 04(R) for P E (0, 1I], 

which satisfies the conditions 

(2.2a) k#(t) = k(t) for t : 
(2.2b) kp(t) > 3/2 for t > 0, 
(2.2c) k(t) > 0 for t 0, and 
(2.2d) kp(-() = k(om) 

Such a regularization could be produced by taking 

Max{f, 2/}), ( > ?, 

rounding off the corner, and extending the result to an even function on the real 
line. Replacing k(s) with k8(t) yields the nondegenerate parabolic problem 

(2.3) aug/at = V * (k,(u,)Vu8) on Q X (0, T], 
(2.4) aug/an = 0 on aQ X [0, T], 

(2.5) u8(x, 0) = uO(x) on Q 

Since k,() is in 64(R) and bounded above zero and u8(x, 0) = u0(x) has been 
chosen so that we have compatibility of the initial and boundary data on au X 
{t 0}, (2.3)-(2.5) is a nondegenerate parabolic problem and u8 is C4 on Qi for all 
t > 0 and 2 in time [11]. We shall later refer to (2.3)-(2.5) for C = 0; this is the 
original problem (1. 1)-(1.3). 

Our next task is to show that u. is close to u in an appropriate norm. Towards this 
end we rewrite the porous medium equation (1.1) in the form 

(2.6) au/at= AK(u), 
where 

(2.7) K(t) = Jk(T) dT 1 + WvI 

We also rewrite the nondegenerate equation (2.3) as 

(2.8) aug/at= AK(u), 

where 

(2.9) K(=|k() dT. 

Before estimating u8 - u, we shall need to define an H-' norm on U. Let T be the 
solution operator w = Tf of the Neumann problem 

(2.10) -Aw =f-f on2s, 

(2.11) aw/an = o on aQ, 

where we define f to be the mean value of f on Q 

(2.12) f= IQJfdx. 
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Let 

(2.13) I2fwdx =j1 fdx=f 

for uniqueness. 
For a function f(x) on 2 We define the norm 11f 11 H- by 

(2.14) fII1IH-'(0) = (If, f ) = {llVTf 112 + ( f dx)} =IITI1IH',. 

THEOREM 2.1. Let u be the solution of (1.1)-(1.3) and let up be the solution of 
(2.3)-(2.5). Then 

(2.15) GIUIL0(oTHI(TH )) + llu - 0uffL2+(oT L2+()) 082+v 

where q = i(v) and C I Q2 ) are positive constants. 

Proof. Using the operator T defined in (2.10)-(2.13), rewrite the equation (2.6) as 

(2.16) Tu, + K(u) j 1 K(u) dx 

at any time t > 0. Similarly, the regularized PME (2.8) is equivalent to 

(2.17) Tu#, + Kp(u#) Kp( up ) dx 

for all t > 0. 
We subtract (2.16) from (2.17) to get 

(2.18) T(u, - uj) + (K(uo) - K(u)) 

- (K(u8) - K8(u#)) + f (K(up,) - K(u)) dx 

at each positive time. Integrate (2.18) against up - u to get 

(2.19) (T(u,t - uj), up - u) + (K(u,) - K(u), up - u) 

= (K(u,,) - Kp(u8), Up - u). 

Notice that, since 

f(up - u) dx (upt - ut) dx = 0 

by the Neumann boundary data (1.2) and (2.4), we have 

f(u,(x, t) - u(x, t)) dx f (up(x,o) - u(x, O)) dx 

=f(uo(x) - u0(x)) dx = 0. 

Thus, 
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The first term on the left side of (2.19) can be written in the form 

(2.20) 2 d |ju,| 
_ 

U1(2 

To bound the second term on the left side of (2.19) we first use the fact [12], that 
for any two real numbers a and b, 

(2.21) (jaja -jbljb) (a-b) ~> a - b , 71=71(V). 
Thus, 

(2.22) (K(uK,) - K(u), u,0 - u) ' 
L2+(a) 

- 

Consequently, 

(2.23) 2 dtIIU,- H-U(0) + ?lIU-UL2+?) ? (K,9(u,) K(u ), u9 - u). 

Use the inequality 

(2.24) ab <IaP +-bq, a, b 0 + 1I 
p q p q 

for p = 2 + v and q = y = (2 + P)/(1 + P) to bound the right side of (2.23) by 

(2.25) CIIK -(u,)-K(u,)IILY(5 +2jj1u-UIL2?() 

and hide the second term on the right in (2.25) in the second term on the left in 
(2.23). 

Since k() = k(s) for ( > /l, at each (x, t) E Q X [0, T] we have 

(2.26) |K, (UH,) - K(u,s) = ||tu } (k,s(,) -uk() d- I 

+d = - + 

We have used the fact that the maximum principle implies that u,(x, t) is nonnega- 
tive. Thus, 

(2.27) ||K (u ) - K(u,)ILY( /2+v 

(2.28) 2 dt 2u- UIIH ,(a) + (q/2)1u, - UII2+, r) 2 +v 

Integrating (2.28) in time from 0 to T establishes the theorem. D 
There are other ways to regularize the PME (1.1)-(1.3). One regularization which 

appears in the literature [1], [10], [15], [16] consists of replacing the initial function 
u0(x) in (1.3) with 

(2.29) u0 a(x) = u0(x) + a 

for 0 < a < 1. Let u,(x, t) denote the solution of (1.1)-(1.2) with the initial function 
in (2.29). The strong maximum principle for parabolic partial differential equations 
implies that [ 1 1] 

(2.30) u,,(x, t)~> a >0 onQX [0, T] 

so that k(u,) is bounded above zero and (1.1) becomes nondegenerate. The 
regularity theory of [11] implies that ua is in the function class C2(0, T, C4(Qi)). 
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The argument used to prove Theorem 2.1 can be used to demonstrate that 

(2.31) lIua - ULOo(H-) + 711ua - UIIL2+P(L2+^) <?coa . 

The lowered convergence rate is due to the replacement of (2.26) by the bound 

(2.32) IK(u)-K(ua)IsCa onQX(0,T]. 

This is why we prefer the regularization (2.2)-(2.5). 
We shall need a generalization of (2.22) later on: for any integrable functions f 

and g on 2 and any / E [0, 1], 

(2.33) nIf-gjlLji:(0 < (Ka(f -K(g)f-g), 

where the constant q is as in (2.22). To verify (2.33), it suffices to show that for all 
real numbers a and b 

(2.34) ja - bj2+v < (K#3(a) - K,3(b)). (a - b). 

Since K is a monotone increasing function we may assume that a > b. By (2.2), 

K~(a) - K~(b) fk3~d (a -b)/2k(O-z2 / 
K8(a) -KO(b) =|k#(t,) dt |(a -b)/2 kfl() = 2 (-/kfl(6) df 

2j(a b)/2k(t)d= 
2 

(a2b)?v 

so that (2.34) holds with q = ((1 + v)2)-l. 

3. Regularity Theory. The regularity properties of the solution of the PME 
(1. l)-(1.3) are not completely understood. When dim(Q) =1 or v = 1, it is possible 
to establish certain LP estimates for au/at which will allow us to prove the highest 
convergence rate in space that the analysis in Section 4 can produce. When 
dim(2) > 1 and v > 1, our proved spatial convergence rates in the next section are 
probably not sharp. When dim(Q) = 1 and v < 2 or when v = 1 in the multidimen- 
sional case, the regularity results of this section will yield the highest convergence 
rates in time that the analysis of Section 5 can produce. When v > 2 in the 
one-dimensional case or v > 1 in several space dimensions, our proved convergence 
rates in time may not be sharp. 

We begin with a collection of basic regularity results. 

LEMMA 3. 1. Let u13 be the solution of (2.3)-(2.5) for 0 s ,B s 1. Then 

(3.1) k13kU) Vu L2(L 2)C 

(3.2) 11'VK,0(Ufl)||L2(L2) < C, 

and 

(3.3) IIKp(UP)tIL2(L2) < C Vkf(ufi) Uft||L2(L2) C 

Proof. Integrate (2.3) against up over 9 to obtain 

l ItupI2 + 
k'(u')Vu| =0 
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and then integrate in time to prove (3.1). Integrating (2.3) against Kfi(ufi),, we see 
that 

2 l d 
j7K0U0j2 

,) Uot + 2tvK(u)|| = O. 2 dt~ 

Integration in time yields (3.2) and (3.3). D 
Our next result is based on an L'-contraction principle which may be found in 

Benilan's dissertation [4]. For completeness, we present our own proof. 

THEOREM 3.2. Let u,0 be the solution of (2.3)-(2.5) for 0 < ?,B 1. Then 

(3.4) laU/8atlL-(O,T L'(9)) < Cl 

where C1 = SUPO<,01 11 /KO(UO)H LI(Q) < X. For the case ,B 0, we have 

(3.5) jjaU1atjjL-(o T,M(s)) <- Cl, 

where M(Q) is the space of finite regular Baire measures on Q under the total variation 
norm. 

Proof. Let ufi and ui be two solutions of (2.3)-(2.4) with 0 </ , 1 corresponding 
to initial data u0 and &0, respectively. Define the following subsets of Q 

Q (t) = {x E Q: (ufio - fi)(x, t) > 0), 

Q_(t) = {x E Q: (afi - f1i)(X, t) < O}, 

and notice that 

(3.6) f t (ui-fii)j(x, t) dx = t \(Kf(uf) -Kfi(zl)) dx. 

We shall prove that 

(3 .7) /(K i )Kfi3( fi3 )) dx < O 
Ai?t) 

for any time t, 0 < t ? T. 
By Sard's Theorem (see Theorem 3.1 of [22]) there is a sequence En I0 consisting of 

positive real numbers which are not critical values of (Kfi(ufi) - Kfio(z))(., t) on U. 
Let 

on (t) - {x E Q: (Kfl(uf) -K Kf(&u))(x, t) > En} 

for all positive integers n. Since a3n (t) is C1, we may use the divergence theorem to 
obtain 

(3.8) f 1\(Kf(ufl) -K,,(au,)) dx 

= lim A /\(K(u,) -K,,(fu,))dx 
n -oo n(t) 

= lim f 1a(K/3(uo -Ko() ) dx- 
n- 11 an~ f t +(a(n l x 
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The integrand of the last term vanishes on ag+ (t) nf a by (2.4). Since Kf(ufl) - 

K,,(u,) is greater than E,n on S2 (t) and equals E,n on au+ (t) n 2, we have shown 
that 

an ( K( u,, )K,8( uC))1 O nasn( 

Combine (3.8) and (3.9) to establish (3.7). 
Bounds (3.6) and (3.7) imply that 

(3.10) a (ufl-%) dx f (up u--%) dx ? O. 

Interchanging the roles of uf and uA, 

(3.11) -1 a ( u - C) dx=- a(u',- i) dx -:O . 

Let i20(t) ={x E 2: (uf - %)(x, t) = 0); it is easy to see that 

(3.12) dt U IUf lId dx = 0. 

These bounds yield the estimate 

(3.13) d IIU,8- %IIL'(Q) =f d u - %I,81 dx I I |- CUA-I dx 

- f (u,8 - 4)8 dx + Ut IQ 
- 

%I,8dx 

- + aa ( uf - f)1 dx s 0. 

Integrate in time to establish the L'-contraction result 

(3.14) ll(UO - %,)(t)|L'(9) ?IIuo - UOIIL1(2) 

for 0 < t ? T, where we have suppressed the spatial variable. 
Let u(t) = u(t + At) for any positive At, and divide (3.14) by At to obtain 

Uf3(t + At) - ufl(t) ufl(1t) - ufl(0) 

11t1 L'(9) 11 11 L (QS) 

for 0 < t T - At. Let At 10 to see that 

1IU/at(t) IL'() 3IaUf,/at(0)IIL'(Q) =11AKfl(U0)IIL(Q) L Cl 

for 0 < , 1. This proves (3.4) and (3.5) follows immediately from the imbedding 
of L'(2) into M(S2). D 

In the special case v = 1, a much stronger result can be proved. This case models 
the isothermal horizontal flow of a perfect gas through a porous medium [17]. 

THEOREM 3.3. Let v = 1, and let u be the solution of (1.1)-(1.3). Then 

(3w15) C11K(U,II a Kt1L(O,T,L 3(0)) 11,an C2 K 

where C2 depends on Mins 1 AK(uo), I I VK(u)t(x, 0) I1, and I I A K(UO) II L3(g2). 
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Proof. We begin with the special case where uo is bounded above zero. For any 
a > 0, we may replace uo(x) with uo(x) + a to obtain a smooth solution ua(x, t) of 
(.1)-(1.3) as in Section 2 satisfying 

u,,,(x, t) >,: a > O on S2 X [0, T] 

We suppress the a subscript until the end of the proof. 
Differentiate (1.1) with respect to time, and integrate the result against K(u),, to 

obtain 

(3.16) (U K(u)tt) + 
I 
d?|IvK(u)tI2 = 0. 

Since v= 1, 

K(u)tt = UUtt + Ut2 

and (3.16) may be rewritten as 

2dX l Id I3 d Ut12 
0 

(3.17) uutt 3 dt (Ut)' dx + -2 dt IvK( = 

Since the first term is nonnegative, integration in time yields 

(3.18) 4 Sup f(u) dx + jIIvK(U)tIIL(OT,L2(o)) 

I Ut(X 0)3 dx + 

3 J )113 2IV~n~,I 

3 IIAK(3O)IILN() + = C2 < 00. 

We claim that 

(3.19) ut(x, t) > MinLAK(uo) = -C2 > -oc 

on S2 X [0, T] for a positive constant C2'. Since ut( t) always has mean value zero 
on Q, either ut( , t) is identically zero or it takes on a negative value. Suppose 
ut(x, t) has a negative minimum at (xo, to); we shall verify (3.19) by showing that 
to = 0. 

Differentiate (1.1) with respect to time, and let p = ut 

(3.20) Pt=u/p+2Vu *Vp+plAu on X(O,T] . 

If to > 0, then 

(3.21) 0 > Pt = UP + PAU '> PAU 

at (xo, to). However, since p is negative and u is positive at (xo, to), (1.1) yields 

(3.22) 0 >p = /K(u) = uuU+ (Vu)2 AU, 

and so 

(3.23) Au(xo, to) < 0. 

This yields a contradiction in (3.21), and so p must attain its minimum on 
aQ X (0, T] or on Q X {t = 0}. The first possibility is ruled out by the Neumann 
boundary condition and the strong maximum principle for parabolic partial dif- 
ferential equations. Thus, to = 0 and (3.19) is valid. 
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Combining (2.24), (3.18), and (3.19), we see that 

(3.24) flui dx =| (ut + 2u7 )3dx 

= f {U3 + 6u2(ut) + 12(u7 )2ut + 8(uy )3} dx 

< f U3 dx + 2f (ut )3 dx ? C2 + 2101'(C2 = C 

for 0 < t < T. At the end of the previous section, we saw that u,(x, t) (the solution 
of (1.1)-(1.3) with u0(x) replaced by u0(x) + a) tends to u(x, t) in L'(H-') and 
hence distributionally as a JO. Thus, aug/at converges to au/at distributionally and, 
since (3.24) yields the bound 

IIaua/atI1Lo(o,T,L3()) < C2, 0 <a ? 1, 

a weak sequential compactness argument allows us to conclude that 

|| aU1a tj||L??(O,T, L3( )) <- C2 * 

Estimates (3.18) and (3.19) imply that 

(3.25) |; Utt L2(L2) <( c2t)1 

and 

(3.26) II VK(u)tII L?( 2) ? (C21) 
2 

when v = 1 with C2' as above. Also, since up converges to u distributionally, 
estimates (3.15), (3.25), and (3.26) are valid with u and K(u) replaced by u, and 

K8(u8), respectively. D 
Our next result provides a new proof of an L? bound for vk(u) in one space 

dimension due to D. G. Aronson [1]. We are also able to derive LP bounds, 
1 sp < oo, for Vk(u) when dim(Q) = 1. 

LEMMA 3.4. When dim(2) = 1 and 1 < p < x, 

(3.27) jj vk( u)IILa(O,T,LP(Q)) < C3 = ji Vk( u0 )IILP(Q) 
for all v 2 1. 

Proof. As in the proof of the last result, we begin with the solution u,(x, t) of 
(1.1)-(1.2) with the initial function u0(x) + a, a > 0, and suppress the subscript 
until the end of the argument. 

For any test function F E H'(Q), (1.1) and (1.2) yield 

(3.28) (Utq, ) + (k(u)Vu, v+) = 0. 

Choose the following test function 

(3.29) = -k'(u)V . (Ivk(u)lp2 Vk(u)) 



446 MICHAEL E. ROSE 

in (3.28), where p > 1. This yields 

(3.30) (k(u)f, - (17k( u)jp2 vk(u))) 

+ (k'(u)V (k(u)Vu), v (IVk(u)p2 vk(u))) 

p dtfQIOI d) 

+ (k(u)k'(u )Au + (V7k( U))2, V. (1| Vk( a )|p2 vk(u))) 

= . 

Use the relation 

(3.31) k(u)Ak(u) = k(u)[k'(u)/u + k"(U)(VU)2] 

= [k(u)k'(u)zAu + (vk(u))2] + (k(u)k"(u)- (k'(U))2)(-U)2 

= [k(u)k'(u)Au + (vk(u))2]1 I(vk(u))2 

to rewrite (3.30) as 

1 d Ul zp-2 
(3.32) - ||jVk(u)IIPP(u + (k(u)Ak(u), V (Ivk(u)I vk(u))) 

I 
((Vk( u))2,7 V (17k( u)jp2 vk(u))) 

In a single space dimension 

(3.33) v * (Ivk(u)Ip Vk(u)) = (p - l)Ivk(u)Ip Ak(u) 
and 

(3.34) f(Vk(u))2 V (Ivk(u)p2 vk(u))dx= (p - 1)f Vk(u)| lAk(u)dx 

= p - 1 | - (j|Vk(u)I| Vk(u)) dx 
p + 1I~; 

P p1 f I vk(u)jIak(u)/an do = O, 

by the Neumann boundary condition (1.2). Thus, 

(3*35) dt || 7k(U)JILP(g) 0 

for all real numbers p > 1. Consequently 

(3.36) Jj vk( u) ||L??(O,T,LP(Q)) 1 || Vkj ( uo )||LP(Q). 

Letting p T oo, we obtain 

(3.37) || Vk( U)IIL-(O,T,L0(Q)) lim || Vk( U)IILo(o,T,LP(Q)) 

p-*oo < lim jjvk(uo)IILP(Q) jj vk(uo)IILaoQ). 
-*00 
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Since u< converges to u in L?2+?(L2+v), k(ua) converges to k(u) almost every- 
where and hence in the sense of distributions. It follows that vk(ua) tends to 
Vk(u) distributionally as a 40. Since the right side of (3.37) is bounded independent 
of a E (0, 1], a weak compactness argument implies that 

|| Vk(u)|L-(L- lim hM Vk(Ua)llLoo(Loo) h< hlM || Vk(U0)lLo(Lw) 

= ljvk(U0)jjL-(Q,. C 

Estimate (3.27) is valid with k(u) replaced by k#(u,). The next lemma is not new 
but it is unavailable in the literature. 

LEMMA 3.5. Let v > 1 and let ,u > z/2 - 1. Then 

(3.38) || IU| VUIIL2(0oT,L2(5)) <C41 
where C4 depends on ,u, v, and 11 UO 11 L?() In particular, for v < 2, 

(3.39) || VUjL2(0,T,L2(Q)) S C4. 

Proof. Once again we begin with the special case where u0 is bounded above zero. 
Since II U II Lw(Lw) < u u1 U1 LO(Lw), we may assume that v/2 < ,u < z/2 - 1/2. Let 

= J(u) in (3.28), where 

JWt 2- v > l2-+, 0. 

This yields 

(3.40) (ut, J(u)) + (|u| Vu, VJ(u)) = (ut, J(u)) +|11 IU VUIIL2( ) 0. 

The first term in (3.40) equals 

(3.41) d uJ() d dx f f+ | 2L-V+ 1 d dx 

dti~~-~J02~~-~+l dt d0 

(2t - v + 1)(2-v + 2) dtu2v+ 
cv "U- v +2)xd 

= CE] fdt u2-V+2 dx. 

Substitute (3.41) into (3.40) and integrate in time to obtain 

I {u(x, T)2,-V+2 _ U(X,0)2'LV+2} dx +11 u| VuIIL2(o,rl2(5)) 

Thus, 
II 1U j' Uj 21- + 

(3.42) 1u VUI JL2(o T,L2(g)) < 21CP KI IJUIL(L) 

2 2|CV I IUOLOO(LOO) =C4 

Since (3.42) holds for ua, all a > 0, and vua, approaches vu distributionally as a IO, 
we see that (3.42) also holds for the solution of (1.1)-(1.3) with nonnegative initial 
data. D 
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The last two lemmas may be combined to establish 

THEOREM 3.6. Let v < 2 and suppose dim(u) = 1. Then 

(3.43) II8U18t||L 2(0 T,L2(U)) CS, 

where C5 depends on v, lUO II LO(a), and I1jVk(uo)II Lo(1). 

Proof. Let u0 be bounded above zero at first. Choose 4 = u, in (3.28), and write 
the result as 

(3.44) lull2 + I d 11 lUI/2VU12 = ( vuP_1utVu Vu) 

(Vk(u)ut, vu) < 2 |Iut,I + 2 fIvk(u)I2* (Vu)2 dx. 

Hide the first term on the right, and integrate in time; by (3.27) and (3.39) 

(3.45) IIutllL2(L2) + |U|7VU|L(L2) 

II Vk( U)II2mIIVuIIL2(L2) ? V * C32* C2 = C2 . 

Our usual weak compactness argument completes the proof. D 
Estimate (3.43) remains valid if ut is replaced with u,t. If we use the test function 

J(u)t in (3.28), where J(A) was defined above, then (3.27) and (3.38) may be used to 
prove that when p > V/2 - 1 and dim(S2) = 1 we have 

(3.46) ju Iu t|L2(0 T,L2(i)) C6 

where C6 depends on A, v, 11 Uo 11 L?(Q)' and 11 vk(U0)II Lw(Q). As usual, we may replace 
u by uf in (3.46). 

Another consequence of the last two lemmas is 

THEOREM 3.7. Suppose v < 2 and dim(Q) = 1. Then 

(3.47) II|vK(U)tJLL2(0oT,L2()) < C7, 

where C7 depends on v, II UO II LOO(), and llIvk(uo)I Lw(Q). 

Proof. Suppose u0 is bounded above zero, so that u(x, t) is smooth. Differentiate 
(3.28) with respect to time and choose the test function 4 K(u)t to obtain 

(3.48) IiL(k(u)ut u) +IIvK(u)tII =2(k(u), 

To bound the right side of (3.48), use ' =k(u),u, in (3.28) to see that 

(3.49) 2 (k(u),, U2) =-(vK(u), V ( k(u),Uj)) 

= - (k(u)Vu, k"(u)VU u,2) - (k(u)vu, k'(u)u,vu,) 

- (k(u)Vu, k"(U)Vu.u2) + (Vk(u)>u,, vk(u)u,) 

-(k(u)vu, + Vk(u) >ut, Vk(u) u,) 

I - 2 )((vk(u))2,uU2) -(Vk(u),, vk(u).uj), 
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where we have used the identities 

k(u)k"( u) = p(p - 1)uP-2 = p(p-1)u2p-2 

V-p (pu- 1)2 P 1 
p Vp 

p 
k(U) 

and 

V(k(u)u,) = k(u)vu, + vk(u)u,. 

Using (3.27), (3.48), (3.49), and the Cauchy-Schwarz inequality to verify the 
inequality 

(3.50) 2 dt || k ( U) u, +1|| VK( U).11 

( 1- p2- )|11 Vk( U)jIL2(Q)IIUtfIj + jj Vk(U)IILo(Q)II vK(u)tII ((u,(( 

I 
11IIvK(u) K11 2+ C|,||2 

Hide the first term on the right, integrate in time, and use (3.43) to establish 

(3.51) rk(u)ut LY(L2) +1VJjK(U)tIIL2(L2) < 
CjIUflIL2(L2) 

< C7 

for v < 2. Use a weak compactness argument to complete the proof of (3.47) and the 
estimate 

(3.52) |K K(u) Utt L?(O,T,L2(g)) < C7 

forv < 2. 0 
Bounds (3.47) and (3.52) remain valid when u, K, and k are replaced by uft, Kf, 

and kfl, respectively. 
Recently, P. Benilan has demonstrated much stronger LP estimates for u, in one 

space dimension than we were able to prove in Theorems 3.3 and 3.6 [5]. 

THEOREM 3.8. Suppose dim(Q) = 1. Then 

(3.53) IIk(u)tIIL-o,T,L-(Q)) ? C8 C8(P, uO), 
for P > 1. In particular, when dim(g2) = 1 and v 1 

(3.54) IIutIILO(O,T,L0()) C8. 

When v > 1, we have 

(3.55) jjUt11Loo(O,T,Lq(U)) ?C9(q, P) 

for any q < q*(p) = P/(P - 1). 

We will sometimes use the regularity hypothesis 

(3.56) IIutIILV(O,T,LY(Q)) < CIO = CIO(Y, P), 

where y = (2 + v)/(I + P) < q*(v) for P > 1, in the next two sections. Bound (3.56) 
is only known. to be true in one space dimension (cf. (3.54)-(3.55)) or when v I 
(cf. (3.15)). Estimates (3.53)-(3.56) are valid when u is replaced by up, 0 < , 1. 
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4. A Continuous-Time Galerkin Scheme. In this section we shall derive error 
estimates for a continuous-time Galerkin scheme based on C0 piecewise-linear 
elements. The roughness of the solution of the PME (1.1)-(1.3) implies that no 
improvement in the asymptotic convergence rates will result from the use of 
higher-order finite element spaces. Let {Ah), 0 < h < 1, be a family of triangulations 
of 2; for convenience, we shall assume that the elements Tj E Ah cover all of 0 

Q = U T. 
TJCAh 

Let p(T7) be the radius of the smallest ball containing Tj E Ah, and let a(Tj) be the 
radius of the largest ball contained in T.. We assume that 

h = Max p(Tj) 
TJEAh 

and that (Ah} is a quasiregular family of partitions; i.e. there is a positive constant 
Lo for which 

(4.1) Sup Max p(T1)/0(T) ? Lo. 
0<hS I TJEAh 

We shall frequently make the further assumption that {Ah} is a quasiuniform family 
of triangulations, so that there exists a positive constant LI such that 

(4.2) Sup Max p(Tj)/p(Ti) < LI 
0<h?1 T .TJ(EAh 

holds. We will always indicate when (4.2) is assumed in our results. 
Let {Mh}, 0 < h s 1, be a family of finite-dimensional subspaces of H1(2) 

defined by 

Mh = {X E 0(K): X IT is linear for each Tj E Ah}. 

We shall always use the H1 norm given in (1.8) in this and the next section. The 
quasiregularity hypothesis (4.1) implies the approximation property [7] 

Inf Ilf - XllLP(2 ? Ch2jjflj W2Pp(g) 
x & Mh 

for all f in W2,p(Q2), 1 s p < x. The quasiuniformity hypothesis (4.2) is known to 
imply the 'inverse' property [7] 

(4.3a) ||XjjH'(U2) Ch IIXII, X E_ Mh- 

Moreover, (4.3a) implies 

(4.3b) lIXIl --- ChlIIjXIIH-I(Q), X E_ Mh, 

because 

||X||2 s CiiXiiH-1(Q)iiXiiH'(Q) Chl iiXIIH-H(.)iIXII 

for all X in Mh. 
Let /3 be a nonnegative parameter, 0 s /B < 1, and define H(t) (Kfl)-'(t) for 

real (, where K#(() was defined in (2.9). Our continuous-time Galerkin procedure 
consists of finding Vh: [0, T] -4 Mh, where Vh is the solution of the system of 
ordinary differential equations 
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for all X in Mh and 0 < t < T. We construct our initial function by letting 
Vh(O) E Mh satisfy 

Ph H(Vh(0)) = Ph UO0 

where Ph is the L2 projection onto Mh given by 

(Phf, x) = (If x), x E Mh, 

for f in L2(S). 
For /3 > 0, the existence and uniqueness of Vh(O) in (4.5) follows from the fact that 

Ph o H, is a continuous coercive monotone operator on Mh and is therefore bijective 
[6]. The existence and uniqueness of Vh(t) for 0 < t - T follows from the fundamen- 
tal theorem of ordinary differential equations. 

In (4.4)-(4.5) we have approximated vp = K,(u,) by CO piecewise-linear elements 
instead of approximating up directly. We have done this because we are able to 
prove a higher convergence rate in the former case. We may then approximate up by 
Uh = Hp(Vh). For future reference, we rewrite (4.4)-(4.5) as 

(4.6) (a Uh X) + (VK(Uh),vx)O 

for all X in Mh and 0 < t ? T, and 

(4.7) PhUh = PhUO. 

It is important to note that Uh is not piecewise-linear, and hence not an element of 
Mh. 

We may now state the main results of this section. 

THEOREM 4.1. Suppose dim(Si) = 1 and v > 1 or that dim(Q) = 2 or 3 and v 1. 
Let /3 be chosen so that 0 ? < Ch23/(I+). Let Vh(t) be the solution of (4.4)-(4.5), let 
Uh = Hp(Vh), and let u be the solution of the PME (1.1)-(1.3). Then 

(4.8) IIU - PhUhIIL(H-') < Chy, ,Y 1 + v 

(4.9) IIu - UhIIL2+^(L2+^) < Ch2"(l+) 

and 

(4.10) IIu - PhUhIILo(L2) ? Chl"(l+). 

Estimates (4.8) and (4.10) require the quasiuniformity assumption (4.2); estimate (4.9) 
does not. 

For dim(Q) > 1 and v > 1, the known regularity theory for the solution of the 
PME (1.1)-(1.3) will allow us to demonstrate 

THiEOREM 4.2. Let u and Uh be as above, suppose (4.2) holds, and assume that 

(4.11) f=Cha, a = (4 + 2p)/(2 + 4v + P2). 

Then 

(4.12) (u - PhUhIIL-(HV-) < C[ln(I/h)] a/(2+2v).h((2+p)/2)a 

(4.13) IIu - 
UhJIL2+/(L2+^) ? C[ln( 1/h)] a/( 1v)(2+?). ha, 
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and 

(4.14) IIu - PhUhIIL-(L2) ?C[ln(lh)] "+)h 

where aO = if dim() = 1 and a 1 if dim(Q) = 2 or 3. 

The estimates in Theorem 4.2 are probably not sharp. Under certain assumptions 
on the regularity of the time derivative of the solution of the PME (1.1 )-(1.3), we 
can improve upon the bounds (4.1 l)-(4.14). 

THEOREM 4.3. Suppose the following regularity result is true: 

(4.15) au/at E LY(O, T, LY(Q)), y= = + 

Let u and Uh be as above and assume that (4.2) holds. Then, with 0 C Ch 2/(1 + v) 

(4.16) IIu - PhUhIIL(H-1) S C[ln(l/h)] c/(2+2v)hy, 

(4.17) IIU - UhIlL2+P(L2+p) < C[ln(l/h)] a/(I+)(2+v) h2/('+?) 

and 

(4.18) IIu - PhUhIIL(L2) < C[ln(Ilh)]?/(2+2P)hI/(2+v) 

where a = O when dim(Q) = 1 anda =xI when dim(Q) = 2 or 3. 

If we make the stronger regularity hypothesis 

(4.19) au/at E L2(0, T, L2(Q)), 

then estimates (4.16)-(4.18) are valid with a = 0 for dim(Q) = 1, 2, or 3. 
We begin our analysis by introducing a discrete analogue of the solution operator 

T defined in (2.10)-(2.13). Let Th be the map from H-'(Q) onto Mh defined by 
Wh = Th f, where 

(4.20a) fv ( j ffdx ) 
XM 

(4.20b) Wh dx= fdx. 

The restriction of Th to Mh is symmetric and positive-definite with respect to the L2 
inner product. This allows us to define the inner product and norm 

(4.2 1a) (XI =)sh (ThX. ) X. + E_ Mh, 

(4.2 1b) IIXIIH-1 h TX, X)1/2 X E_ Mh, 

on Mh. Let f = 4 E Mh and X = Th in (4.20) to see that 

(4.22) 11114'I = TIIvTh4'1 + ( dx dx) } II Th4'I,,(0). 

Since Th is symmetric and positive-semidefinite on L2(Q2), the H,71 norm on Mh 
extends to a seminorm on all of H-'(Q) 

(4.23) hIfII (Ti, f) = (ThPhf, Phf) =2 lphf II_(S2)' f E H (). 
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LEMMA 4.4. Let the H-'(2) norm be given by (2.14). Then 

(4.24) 11X11'V;IXIH-(Q X E Mh. 

If we assume that (4.2) holds, then there is a positive constant 8 for which 

(4.25) 3llXllH-'(Q <IlXIlH*', X E Mh, 

so that the H,- and H'(s2) norms are equivalent on Mh. 

Proof. Let Eh be the projection of H'(2) onto Mh given by 

(4.26) (v(Ehf), Vx) = (vf,vx), X E Mh, 

(4.27) fEhfdx = ffdx 

forJf H( (Q). The definitions of T and Th imply that Th = EhT. Use the well-known 
fact [71 that It Eh f II H'(,) liftI H'(2) in combination with (2.14) and (4.21) to obtain 
(4.24) 

11XIIH;1 = (ThX, X)1/ 
_ 

1EhTX11HJ(2) 

_--IITXIIHI(S2) =(TX, X) =IIXIIH-1(92). 

By (4.3), we have 

(4.28) liiXl - Sup{(x P): E Mh, 11i4i < 1} 

? Sup{iiXIiH;'ii4iiH'(0): E4 Mh, 11441 1 

Sup SU{IXIIH;I Ch 1llIQ: Mh, 110l < 1} 

= Ch'IIXIIJ<H. 

Combine the elliptic regularity result [7] 

(4.29) iIT0IIH2(Q) < C||0|jL2(g), E- H2(E2) 

with the well-known approximation property of the elliptic projection [7] 

(4.30) ii(-E*)+|i ? Ch2ii4'iiH2(12), 4E H 

to see that 

(4.3 1 ) 11 ( T-h )0| _< Ch2||1|,01 0 E L2(j2) . 

Use (4.2 lb), (4.28), and (4.31) to obtain (4.25) 

iiXiiH-'(Q) = (TX, x) = (EhTX, X) + ((I - Eh)TX, X) 

(ThX, X) +((T- Th)X, X) 2IixiK' + ((T- Th)X, X) 

_i IXll*- + Ch2llXll 
2 

CllXli'2 

The heart of our argument is contained in the proof of the next result. 
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LEMMA 4.5. Let u,3(x, t) be the solution of (2.1)-(2.3) with 0 ? /3 ? 1. Let Uh = 

H,3( Vh), where Vh solves (4.4)-(4.5) for the same choice of P3. Then 

(4.32) ||U PhUhL0(O,T,H1) + JT( K,(u) K(U,), u- Uh) dt 

C (T - Th) at LT(O, T, LTY(Q))' 

where y =(2 + v)/(1 + v). 

Proof. Comparing (2.3)-(2.5) for 0 < P3 < 1 with (4.6)-(4.7) yields 

(4.33) (at (u, - Uh) X) + (V(K,3(u,8) - K,3(Uh)), VX) = 0, X E Mh, 

for 0 < t < T. Choosing X = 1 in (4.33), we see that 

df(U, (- Uh)(x, t) dx = O, O < t < T. 

By our choice of Uh(O) in (4.7), this implies that 

(4.34) (u,3 - Uh)(X, t) dx= (I- Ph)uo dx = O 

for 0 < t ? T. 
Let X = Th(uo - Uh) in (4.33), and use (4.23), the time-invariance of T and Th, 

the fact that KO(Uh) E Mh, and (4.34) to obtain 

(4.35) 2 h - UhlH + (K(U) K(Uh), U Uh) 

= -((I - Eh)KO(uO), u3 - 
Uh). 

Use (2.17) to rewrite the right side of (4.35) as 

((T - Th )auwat ,8 u Uh) 

and use Holder's inequality, (2.24), and (2.33) to bound it by 

(4.36) Il(T - Th )3u,8/tIILY(Q)IU - UhIIL2+?(Q) 

C cl(T- Th)3u,3/3tLY(Q) + 2|U - 2+v(a) 

C cI(T- Th)u,8/3tI>LY( + 2 (Kf(uo) - KO(Uh), U - Uh). 

Absorb the last term in the second term on the left side of (4.35), and integrate in 
time to obtain (4.32). C] 

LEMMA 4.6. Let Ph be the orthogonalprojection of L2(o) onto Mh with respect to the 
L2 inner product, and let U,3 be the solution of (2.3)-(2.5), 0 < /3 < 1. Then 

(4.37) -I|, Ph)UOL-(L2) < Chl/(l+v) 

and 

(4.38) IR,- Ph)UOIL-(H-1) < Chy. 
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Proof. Let u' be defined by 

uj (x, t) = Max{up(x, t), e) on Q X [0, T] 

for any e > 0. Since kq(uq)(x, t) > je whenever uq(x, t) > e by (2.2), bound (3.2) 
imphles 

(4.39) CVu| 2()) 

Use the approximation property of the L2 projection [7] 

(4.40) 1(' - 
Ph)0||H'(S) < ChIIkIJHJ+'(Q) 

for 4 e Hi+ l(a),] = -1 or 0, together with (4.39) and the boundedness of Ph as an 
operator on L2(o) to see that 

(4.41) (I 
- 

Ph)U)lL-(0,T,L2(Q)) 

? I(I 
-Ph)(ul 

- U) 
11L(0,T,L2(62)) 

+ 
-h PU)IL-(0oTL2(62)) 

? C| - UaIIL-(o,T,L2(Q)) + Chit VUfIIL(O,T,L2(g)) 

< C(e + he,-). 

Lettinge= h'7 A +v), we see that (4.41) implies (4.37). Next, use (4.40) with j = 1, 
bound (4.41) and the idempotence of (I - Ph) to verify (4.38) 

I(V - 
Ph)UIL/(O T(H-o(T)) 

= (I _ 
Ph)2 UP L(H-) 

? Ch||(I - 
Ph) U|L0(L2) < Chl?1/(1?v) = ChIi. D 

LEMMA 4.7. ForO ?< < 1, 

(4.42) IIU - UhIlL2+J (0,T,L2+?(Q)) <?(T - 
Th)au,/3tILY(O,T,LY(9)) + CP 

If we assume the quasiuniformity hypothesis (4.2), then 

(4.43) IIu - PhUhIlLo(H-') + IIu - UhI|L2+ (L2+?) 

< C{II(T- Th)(3au/3t)hLY(LY) + h2Y + 2+Y} 

and 

(4.44) IIU - PhUhIIL?o(L2) ? ChPllphU 
- 

PhUhIILho(H-1) + Chl/(l?v) 

< Ch || u - PhUhIILo(H-1) + Chl'( )1. 

Proof. Combine (2.15), (4.3), and (4.32) to obtain 

(4.45) IIu-U|IL1(HI) + IhPhu,1- PUhIJJ(H11 ) 

+ 1 (K(u) - K(u,), u - uq) + (K,,(u) - K)- (Uh), U-Uh) dt 

C|(T- Th) 3 | + C#2 . 
atLTY(LTY) 
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By (2.22) and (2.32), 

(44)IIu 
_ U2+vU (4.46) llu - UhIIL2+ (L2+?) ? Clu - uphIL2+?(L2+?) + C||u - UhL2+?(L2?+) 

_ C (K(u) - K( )u - up) +(K(u,) - K(Uh), Up -Uh) dt. 

Bounds (4.45) and (4.46) imply (4.42). 
If we assume (4.2), (4.25) yields 

(4.47) POP - 
PhUhhL"O(H-1) < C|Phup 

- 
PhUhlIL-(H; ). 

Combine (4.38), (4.45), and (4.47) to obtain (4.43). Finally, use (4.43), the inverse 
hypothesis (4.3), and (4.37) to obtain (4.44) 

IIU - PhUhIIvo(L2) 211(- Ph)UIIL?(L2) + IlPhU - PhUhILo(L2) 

? Chl7( 1v) + ChII1 PhU - 
PhUhlIL?(H-). D* 

To establish Theorems 4.1 through 4.3 we will need some additional results for the 
operator T - Th. 

LEMMA 4.8. Let T be defined by (2.10)-(2.13), and let Th be as in (4.20). Assume that 
the triangulation {Ah} is quasi-uniform, as in (4.2). Then, in one space dimension, 

(4.48a) ||(T - Th)AjLP(a) < Ch2 IIAILP(Q) 
for allf E LP(R), 1 < p < x. Wen dim(u) = 2 or 3, we have 

(4.48b) |I(T - Th)ALP(Q) < C[ln(1/h )]1 1/1p 1111ILP(Q) 

for allfE LP(Q), 1 <p < x. 

Proof. The estimate 

(4.49) 11 (I - Eh0)ILP(Q) < C[ ln(l/h)] a I2/PI h2114II W2,p(Q) 

is valid for 1 ?p < x with a = 0 when dim(2) = 1 and a = 1 for dim(2) = 2 or 
3. The one-dimensional case was proved by Douglas, Dupont, and Wahlbin [9]. For 
two space dimensions, (4.50) was verified by Nitsche [13] and Scott [20]. The 
three-dimensional case is treated in Ciarlet [7] and Nitsche [14]. 

To complete the argument, we invoke the elliptic regularity result [7] 

(4.50) IITOII W2,p(g) < CII0IILP(Q), 
which is valid for 1 < p ? x when dim(2) = 1 and for 1 < p < x when dim(2) > 
1.D[ 

Proof of Theorem 4.1. When v = 1 and dim(2) > 1, estimate (3.15) implies 

(4.51) I3Ua/3t|tL2(0 T,L2(Q)) Cu/tL(OTL3(Q)) < C1l1 
By (4.31), we have 

(4.52) (T- Th)3aup/3>L() j C|(T- Th)au,8/34LY(LY) 

< C? h |au/8at|L2(L2)) = Ch2Yaup/atilL2(L2) ? Ch27. 
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When 1 ? v < 2 and dim(Rl) = 1, estimate (3.43) or bound (3.55) implies 

(4.53) Ilaufl/atIlL2(O TL2()) 
- 

C12, 

so that (4.52) holds. 
When dim(2) =1 and v > 2, we can use (4.49) with a 0 O and p = y together 

with (3.56) to obtain 

(4.54) ||(T - T, )aui/atIIIY( LY) < (ch2 Ia u/atIILY(LY)) 

< Ch2YIIauP/at LY(LY) C13' 

Use (4.52) or (4.54) with 0 ? /B ? Ch2/(I+' ) to prove (4.9). Use (4.43) and (4.48) 
to verify (4.8) under the quasiuniformity assumption (4.2). Combine (4.44) and 
(4.52) or (4.54) to establish (4.10). D1 

Proof of Theorem 4.2. By estimates (4.48a) and (4.48b), 

(4.55) jj (T - Th )u8tII (oTL())< C( [ln(l/h)] ''I -2/ry h2IIuftILY(o T LY())) 

C[ln(l1/h)] a/(1 +)h 2YIlIutL y(oTLY(0)), 

where a = 0 if dim(Q) = 1 and a =1 if dim(u) = 2 or 3. By Holder's inequality 
and the Riesz-Thorin interpolation theorem [21] 

(4.56) IUPtIILY(O T LNY()) 1 Cl IIUtII LP(Q) IIUptIL2(a) dt 

C| t|L'(0, T, L'( 2)l lL 2(0 T, L2(g)), 

where the first factor on the right is known to be bounded independent of /8 by 
Theorem 3.2. To bound the second factor, use (2.26) and (3.1) to see that 

(4.57) 11U,t||L2( L2) 
< c:-l2 

Combine (4.55), (4.56), and (4.57) to obtain 

(4.58) II (T - Th )ufltllj( L'y C[ln (1/h)] av/(1 ?+v)h2yv/(l +v) 

Use (4.42) and (4.58) to see that 

(4.59) IIu - UhIlL2+v(L2+? ) v C([n(l/h)] 3 ), 

and choose /3 = h? as in (4.11) to obtain (4.13). Use (4.43) and (4.58) to verify (4.12), 
and combine (4.44) and (4.58) to prove (4.14). 

Proof of Theorem 4.3. If we assume (4.2) and (4.15), bound (4.48) with p = y yields 

(4.60) JJ (T - Th )uIItIILT(LY) < C[ln( l/h)] av/(l + h 21 y 

where a = 0 if dim(2) = 1 and a = 1 when dim(s2) = 2 or 3. Combine (4.60) with 
(4.42), and suppose 0 ? < Ch2/(I+ ) to prove (4.17). Use (4.43) and (4.60) to 
verify (4.16), and combine (4.44) with (4.60) to prove (4.18). Under the regularity 
hypothesis (4.19), the proof of Theorem 4.1 indicates that (4.16)-(4.18) are valid for 
v 2 2 with a = 0 for dim(l) = 1, 2, or 3. 0 
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5. Backward-Difference Schemes. Let the triangulation {Ah} and the finite ele- 
ment spaces {Mh } be those defined in Section 4 for 0 < h < 1. Let At = T/N, where 
N is a positive integer, and define tn = n A t for n 0 O, 1, . . , N. For a function F on 
[0, T], let Fn denote F(tn), and define (a+ F)n = (Fn+I - Fn)/At. 

Our backward-difference scheme consists of finding Vhn EE Mh, n 0, 1, . . , N, the 
solution of the nonlinear algebraic equations 

(5.1) ((a+ H,8(Vh)) X) + (VVhn?1 vx) 0 

for X E Mh and n 0 O, 1,. . . , N - 1, with the initial function defined by 

(5.2) PbHI3(Vh) = Phuo. 

The parameter ,B will be given below. The existence and uniqueness of Uh, = Hf( Vh) 
may be proved using elementary monotone operator theory [6]. We may rewrite 
(5.1)-(5.2) as 

(5.3a) ((a+ Uh), X) + (vKO(U:n'), VX) 0 

for X E Mh and n = O, 1,...,N-1, and 

(5.3b) PhUh = Ph u0. 

THEOREM 5.1. Suppose dim(2) 1 and v < 2 or that dim(s) > 1 and v = 1. Let 
0 < 3,B sCh2/(v+1), and let Uhn =H(Uhn), where Uhn solves (5.1)-(5.2) for n - 

0, 1,. .., N. Then for dim( 2) = 1, 2, or 3, 

U 2+v 1/(2?v) 211v t2/2v) 
(5.4) ( 2I(U - Uh) IIL2+?(&)2 t) ? C(h2/(+v + (At)2/(2+v)) 

If we assume (4.2), then 

(5.5) Max jju' - PhUhnljjI-I(u) < C(hY' + (At)), 
n 

and, if we also require At < Chy, 

(5.6) Max IIun - PhUhnlIL2(a) < C(h'-l + h-'(At)) Chl/(lA ). 
11 

THEOREM 5.2. Suppose dim(S) =1 and P1 > 2. Then 

N 1/(2+v) 

(5.7) I k|(U - Uh )L2+'(62). At) < C(h2/(1?) + 
1,=0 

Under the quasiuniformity assumption (4.2) 

(5.8) Max IIun - PhUhjIIH-i(Q) < C(hy + ( At ), 

and, if we assume At < Ch2, 

(5.9) Max IIun - PhUhnlIL2( ) ? C(h7-'l + h-(At )y/2) =Chl(I+ 
n 

When dim(2) > 1 and v > 1, the known convergence rates are probably not 
sharp. 
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THEOREM 5.3. Suppose (4.2) holds, let /8 be given by (4.11), let v > 1, and let 
dim(Q) = 2 cr3. Then 

N 2/(+V 
(5.10) ( jl(u - Uh)nhIL2+p()) /(t 

n=O 

< C([ln(1/h)] ap/2(l +)h(2+v)/2 o + (Aty/2) 

(5.11) Max 11(u 
- 

PhUh) IIH-I(Q) < C([ln(1/h)]av/2(l+v)h(2+V)/2U +( /2) n 

and, assuming AXt < Ch ( + P)a, 

(52 M ( - PhUl) ||L2(9) ? C( [ln(|/h)]av/(2(l +?))h ((2+v)/2) u-), 

where a = O if dim(2) = I and a = 1 if dim(2) = 2 or 3. 

THEOREM 5.4. Suppose (4.2)and (4.15) are valid. Suppose 0 < /3 < Ch2/("+v), and 
let a = O if-dim(g) = I and a = 1 if dim(g) = 2 or 3. Then 

UN 2+ I(2v 
(5.13) (O JJ( - Uh) nIL2+2(QAt) + 

n=O 

< C([ln(l/h)] a/(I+v)(2+v)h2/(1+v) + (At),/(,+P) 

(5.14) Max PhUh) IIH-I(Q) < C([ln(1/h)]av/(2+v)hY + 
n 

and, assuming At < Ch2, 

(5.15) Max 11(u - PhUh ) n|IL2(9) < C([ln(l/h)] a/(2v+2)hl/(v+1) +( 1/(2 + 2) 
n 

If (4.19) is valid, then (5.13)-(5.15) hold with a = 0 for dim(2) = 1, 2, or 3. 
Moreover, when (3.47) holds, then bounds (5.5)-(5.6) are still valid. 

To prove these results, we shall need to modify Theorem 2.1. 

LEMMA 5.5. Let u,8 be the solution of (2.3)-(2.5). Then 

2 N 
(5.16) Max ||U -U H-'(S2) + 

nn= 

< C(j32+ + (At)Y). 

When (3.47) is valid, a stronger result is true 

2 N 

(5.17) Max l - uUH-()n+ ( n ~~n=0 

? C(f 2+' + (At)2). 

Proof. Equation (2.16) can be rewritten as 

(5.18) (3+u) A = AK(u)n+' - 4j ' (u (tn+) u,(s)) ds 

= AK( U)n+I - tn+I utt(T) dTdS, 
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and (2.17) can be expressed as 

(5.19) AK (U))n+ _ - jn+i f n+1 T() dTds. 

Subtract (5.18) from (5.19), integrate the difference against T(ua - u)n+ , and use 
the Cauchy-Schwarz inequality to obtain 

( 20) I (||( l - )n+jlI2 ||(U' _)nlI2 (5.20) 2t{(p-U 'f)-ju )I~() 

+ (KO(uS) 
n1 - K,(U)n+l, (U -U) ) 

s (K(u) -Kp(u)n+l, (U -U)n+l) 

- 
( 1/:tn+/ ttn+} (Uf U) (T) dTds, T(uu U)n+1 

where we have used the fact that 

|(U,0 _U)n dx =O, n =O,1,...,N. 

By Holder's inequality, (2.24), and (2.33), the first term on the right side of (5.20) 
may be bounded by 

(5.21) K(U)n+1 - Kp(U)n+' 11(Q) (Up - U)n+I' L 2P(f) 

|K(u)1 - 
K n+1 + (Up - U) 2+v 

p,(Ujn LTY(Q) 4 ) Lp(f2) 

C/322+ + 4(K(U)n+1 - K,(U)n+l, (Up - U)n+l). 

As for the second term on the right side of (5.20), use H6lder's inequality (2.24), and 
(2.33) to see that 

(5.22) - (+ tn+ (Up0 - U)tt(T) dTds, T(U - U)n+ 

=_(Jftn+ft tn+T(u U)t(T)dTds (U-U) n+1) 

? c(-|f n+ J tn+1I jIT(U - U)(T )dIL(()dTdS)n+ 
S C( t I n+l IS n+l IIT(U-u)II 'r)Y(Q ) TddS L2v 

I 11 tn- tn+1 l 

c A ( it| 15 I| T( u -U T )11LY(2) d dTs) 
(Upl 

- Un+12v 

U) L2~( 

+ C( 11 | + (nlT(UO(T))IL'Y(Q ) dTdS) 

+4 (Kp(p) K,(U))j1, (Up - U) ) 

where the last term may be hidden on the left side of (5.20). 
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By the Jensen and Holder inequalities, 

(5.23) (iftn+i ftJ;i TUtt ( T )jj LT(Q) dT ds) 

Cftn+t (ft+ t JT ( Tr) 1 Ly(u) d) ds 

C fAt | ((tn+, - I ITutt LtY(Q))) ds 

< C( Av t ) 1/ +) 1 TuS l ( *L()- 

Setting /3 = 0, we also have 

(5.24 (ljn+i ftn+1 T) d-s ( 5 .24) (A/t I l j 
lTU tt( T )1 lLrY( )dtd ) < C(/ ) ||T |lLr( t ,,stt + L'Y(Qu)) 

By (5.20)-(5.24), 

(5.25) 2L(|{ (Up - U)n+1 2 -|(U 
_ 

U)n 112 ) 

+ K 
,(uK(a) +l 8(u))n (u0 - u)+ 

? C/3 + C( t)'('11 TUPttIVLY(tnt LT(i2)) 
+ 

11TUttIILY(tn,tn+ ILNY(a))} 

Multiply by lAt, and sum on n to obtain 

(5.26) Max |(Up- U)n| 2 + (K8(u)n+1 K- K(u)n1', (u- ) t 
n n 

C/32 + C(^t )Y { 
ITUPt1LTY(O T,LY(Q)) + IITUttILY(O,T,LTY()) } 

Recall bound (3.3) 

IKp(u)tjIL2(o T,L2(2)) - C, 0 ? / S 1, 

and note that 

(5.27) 11 TUtt11LT(LT) = Kp(Up)t 
- f K(( u) t, dx|| 

? 
|Kf( 

U 
)ttLY(Ly) 

? 
C||KI( Up )tjL2(L2) 

C 

for 0 ? /3 < 1. This completes the proof of (5.16) in the former case. 
Next, suppose (3.47) holds 

11VK(U)tL2(0 T L2(g)) < C, 0 I / 1. 

Use the representation 

-T(UpU-)t = K(U),-K(U)t -i fK(U),-KP(uP),dx 
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and the Cauchy-Schwarz inequality to bound the second term on the right side of 
(5.20) by 

(5.28) ( ft t 'T(U0 - u),,(T) dTrds, (Up - u)n+' 

? Jtn? f; I+I|+I IIT(u" - U)tt(T) IHI(Q)dTds * IRudS - 

< tn+ ftn+ (I VK(U#)t(T)II + IIvK(U)t(T)jI) dt ds 
AtI 

| (Up - )n+1 

C . At* (I |VKp(Up).IIL2(t,,t+,L2(g)) + VK(U)tIIL2(tn,tn+I,L2(f2))) 

(U - )n+1 

? C * (|iiVK'8(Up)tII22(t tL2(Q)) 
+ vK( 

2 

)tII2(+ 2()) 

+C(u ( - )n+ 2 

Bounds (5.20), (5.21), and (5.28) yield 

(5.29) 2 8t { ||(Up - u)1 
_ 

-||(u2 - 

n+1-K,(U)n+', (Up _ U)n+) 

Multiply (5.29) by 2LAt, sum on n, apply the discrete Gronwall lemma, and appeal to 
(3.47) to verify (5.16) 

Max R(U - U))n,(2 + : (K(ur' -n+ IK(UU)n, (Up ) 
) 

n 

C/23v + C(lt) ( vK(8) tl L2(0TL2(2)) + || VK(u)tIL2(0,T,L2(U)) 

C32+v + C(At)2. 0 

LEmmA 5.6. Let Uhn = H n(Vh), where 
Vhn, 

n = 0, 1,... ,N, solves (5.1)-(5.2). Then, 
with m = y = (2 + v)/(l + v), 

(5.30) Max +(u -PhUh):K ?I (Kp(up) -Kp(uh) (up- Uh). At 

n 

C cjj(T- Th)auP/3atIILT(LY) + C(tt)m. 

Moreover, 

(5.31) II1(U Uh)n|IL2+ (02), At 
n 

? Cjj(T- Th)auP0/atjLY(LT) + C(zt)m + C/3 . 
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If we assume the quasiuniformity hypothesis (4.2), then 

(5.32) Max 11(U - PhUaIIH'-(0) < Ch- Max II(U-PhUh) IIH-I(Q) + Ch'7(l1 ) 

and 

(5.33) Max I1(u - PhUh) nIL2(g) < ChI Max ||(u -PhUh)n7|H-_(,) 
_ Ch 1A+) 

If (3.47) is valid, then (5.32) and (5.33) hold with m = 2. 

Proof. Use (5.3)-(5.4) and (5.19) to obtain 

(5.34) ((a+ (up - Uh)) n, x) + (V(K(u)n1 - Kp(Uh) ), VX) 

a- st |n , + Up8t( T ) d T ds, X) 

Choose X = Th(ul - Uh) , and use the fact that (up - Uh)n+ ' has mean value 
zero on Q to see that 

(5.35) 2LAt (U(up - Uh) || H, -jj(u U- Uh ) nH} 

+ (K,(u,)n+l - Kp(u)'n+l, (Up - U)n+l) 

=-(f\t 
TIf u8tt(T) dTdds, (Ul- Uh)n) 

((T- Th)(8auP ) , ( - Uh)n). 

Use Hblder's inequality, (2.24), and (5.23) to bound the first term on the right side 
of (5.35) by 

(5.36) I] ftn+i Tu ,(T)IILY(Q) dTds | 
h )n7 L2 '(o) 

(1fn+I tn+III (\I dL 1 (Ufl uTn + 
< CF /\ | t ||~~~~~~~TUftt(T)||L adT ds) +4|(I h)nI+l (2 JJIIuptt~JiIILY(A2)ru 4 '-'hi (12 

C(/\t ) 1 [ TU'Btt 1lL'Y tn't, t+ 1,sLY(a})) 

+ 
I 

Kf(u,, )n -K,(Uh )n , (U u, ) , 

where the last term may be hidden. 
Next, note that 

(5.37) |(T- Th)(a up)n |LY(Q) = lft| Il(T- Th)Uplt(T)IILY(u)dT 
tn 
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By H61der's inequality, (2.24), (2.33), and (5.37), the second term on the right side of 
(5.35) may be bounded by 

(5.38) (T- Th)(a U) VLY(Q) h(Up U,) I L L2+(Q) 

: Ih)(a+ Up) |I + | - ) 2+ 

A t |(- Th) UptILY(tn,tn+,1,LY()) 

+ ( K( l 
_a -Kf(Uh )n , (U._ U ) , 

where we hide the last term as above. 
By (5.35)-(5.38), 

(5.39) ~-~{(||U Uh)n?1 - -(Up Uh)+ W'} 

+2( K(U )n -Kf(Uh )n , (Uf U- uh)n) 2~~~~~~~~~~~~~~~~~~~ 

C(At)'"( I YTUttII(tt+ILT(Q)) + C(At)' II(T- Th)uptlILy(tt+LY(a)). 

Multiply by At and sum on n to obtain 

(5.40) Max (U- Uh) ; | 
+ 2 (K(u) -K(Uh)n, (U. U- )) At 

? C(At)||IITUttI IY(oTLY(g)) + C|(T - Th) ut LY(oTLY())- 

Use (5.27) and (5.40) to prove (5.30) with m = y. Combine (2.33), (5.16), and (5.27) 
to verify (5.31) with m - y. 

When (3.47) is valid, we can establish bounds (5.30)-(5.33) with m = 2. We 
replace (5.36) with the following bound for the second term in (5.35) 

(5.41) yt | || TUCtt(T)U1tI(I) dTdS ||(U - Uh) ' IH(') 

C* A t * t TUpttIIL2( tn In H()) + C h 
(U - n-i-i 

C- AtI TUp8ttjjL2(t t +1 H1(Q)) + Ch(U Uh) 2?-12 

< C -At * VK(TU)tIIL2(t t+,, L2(HD) + C (U Uh)n+l 

2 

H(a)' 
where we have used the identity 

-Tut, = Kp(Up)t- 
] 

uffK(Up)tdx 

and the consequent relation 

|| TU8ttIHlaS) = VK1 ( Up) tIu l 2(,)- 
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Next, use (2.24), (2.33), and (4.31) to see that 

(5.42) (U - Uh)n11 H2(Q) 

=j|(Up - Uh )l|2H + ((T- Th)(up,- h) +, (u- h)n) 

(U h)n+l +C2 (Upl 
U <||(U U*) IH-I + Ch h|(u nU* 

2 

< ( U- ) |H + Ch| h)n 
2 

2+2 

A||(U U*)nIl + 
4 |1 - Uf) h 

||1l 22 + Ch2(2+v)/v 

?|(Up - U^) >'H; + 4 - K h(U)n, u - Uhn) 

+Ch2Y. 

Combining (5.35), (5.38), (5.41), and (5.42) yields 

(5.43) 2,At (|(u - U )' |H -II(U - u I) JJ21} 

+-2 ( K(up) -Kp(Uh) /,u - Uhn?I) 

< C(At) 11 VK(U8t|2t,n,L() 

+C(/t) ||1(T- Th)uptILY(t tn+ ,Lj(Q)) 
+ Ch(U - Uh)+ H 

Multiply (5.43) by 2 At and sum on n using the discrete Gronwall lemma 

(5.44) Max IUp Uh) jI + E (K8(Up) -K(Uh) ,(U Uh)n)-LXt 

C( t )2Ij VKf( Up )tljL2(0 T,L2(g)) + CII (T - Th ) Uptj Lj(,T,LY()) 

Use (3.47) and (5.44) to prove (5.30) with m = 2. Use (2.33), (5.17), and (5.44) to 
prove (5.31) with m = 2. 

Under the quasiuniformity assumption (4.2), we have 

(5.45) Max I(U -PhUh) InH_(Q) 
n 

Max { (U-u IIH- (E2) +11(I-Ph)UfIH-'(Q) + hPh( - 

< CMax { 
||(u- up) nIH_I(2) + IlPh(Up - Uh) 11H} + Ch, 

where we have used (4.23), (4.25), and (4.38). Bounds (4.23), (4.25), (4.37), (4.38), 
(5.16)-(5.17), (5.40), (5.44), and (5.45) yield (5.33). 

Under the hypotheses of Theorem 5.1, we may use (3.15), (3.26), (3.43), and (3.47) 
to see that 
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so that (4.31) and Lemma 5.6 imply (5.4)-(5.6). Combine (3.3), (3.55), (4.48), and 
Lemma 5.6 to verify Theorem 5.2. Use (3.3), (4.59), and Lemma 5.5 to prove 
Theorem 5.3. Finally, use (3.3), (4.31), (4.48), and Lemma 5.6 to justify the 
conclusions of Theorem 5.4. 

Remark. The argument of Lemma 4.6 may be used to show that up can be 
replaced by Uh in estimates (4.37) and (4.38). To see that bound (4.39) holds for Uh, 
just substitute aVh/at E Mh into Eq. (4.4), integrate in time, and recall that Vh = 

Kvl(Uh) 
This remark allows us to delete the projection Ph preceding Uh on the left sides of 

error estimates (4.8), (4.10), (4.12), (4.14), (4.16), (4.18), (4.43), (4.44), (5.5), (5.6), 
(5.11), (5.12), (5.14), (5.15), (5.32), and (5.33). 
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